Python:

cuda.compute

https:

ithub.com/NVIDIA/cccl

CUDA Core Compute Libraries
for Python

What is it?

cuda.compute is a Python package that brings composable,
high-performance CUDA algorithms to arrays, tensors, and data
ranges (iterators). It fills the missing middle layer: optimized GPU
kernels that act as reusable building blocks, making it easy to
write efficient algorithms—without needing deep CUDA
expertise.

Who is it for?

Python developers who want to write custom algorithms
portable across GPU architectures without dropping down to
CUDA C++,

Build PyTorch ops in pure Python

— N L B
— U1 MU W U N U U

O
o Ul

Speedup over PyTorch associative_scan()

Faster than torch.compile()

PyTorch recently introduced the higher order operator
associlative_scan that computes a parallel prefix scan over an
input tensor with a user-provided associative operator.

We implemented associative_scan entirely in Python with no
C++ code using cuda.compute’s scan. We compared our
implementation's performance to the existing PyTorch
implementation compiled with torch.compile(). Benchmarks
showed that our implementation achieves up to a 5x speedup.

cuda.compute offers speed-of-light performance and flexibility
through Python defined operators and custom datatypes,
making it ideal for developing PyTorch operators.

CCCL Tops GPU MODE Leaderboard

Simple Python implementations based on -~ GPU MODE
cuda.compute top the GPU Mode leaderboard.

cuda.compute achieves performance on par with -
CUDA C++, i.e., state-of-the-art performance across
GPU architectures.

H100 A100 L4 T4 @ =T

grayscale 10th N/A N/A N/A
histogram 1st 1st 1st 4th
prefixsum 1st 1st 1st 1st
sort st Ist st st
vectoradd Ist st 1st 1st
vectorsum 2nd 2nd 4th 2nd

Speed of Light Algorithms,
no manually written CUDA kernels

import cuda.compute
import torch

Scan algorithm showcasing iterators, custom operators, and kernel fusion

Create a counting iterator to represent the sequence 1, 2, ... N
counts = cuda.compute.CountingIterator(1)

def square(x):
return x * X

Create a transform iterator to represent the sequence 1, 4, 9, ... N*2
input = cuda.compute.TransformIterator(counts, square)

2™ 2 2™ 16 2720 2"24 2"28

W Float16 mFloat32 mFloatb4

Nader Al Awar (NVIDIA), Ashwin Srinath (NVIDIA)

Create an output array to store the result

output = torch.empty(2**20, dtype=torch.int64).cuda() Explicit Fusion: Since

iterators are "lazy’, all

def add(a, b): computations are fused into
return a + b / a single kernel call here.

Perform the scan
cuda.compute.inclusive_scan(input, outpvt, add, init=0, num_items=output.size()]

Merge sort algorithm showcasing a custom datatype to be used as input to sort
@cuda.compute.gpu_struct
class Pair:

a.: torch.int16

b: torch.float64

Prepare sample input

a_keys = torch.tensor([3, -1, 3, @, -1, 2, 0], dtype=np.int16).cuda()

b_keys = torch.tensor([1.5, 2.3, 6.5, 9.5, -7.0, 4, -1.0], dtype=torch.float64).cuda()
keys = cuda.compute.ZipIterator(a_keys, b_keys)

Struct-aware comparator
def compare_op(lhs: Pair, rhs: Pair):
return lhs.b < rhs.b if lhs.a == rhs.a else lhs.a < rhs.a

Perform the merge sort in-place
cuda.compute.merge_sort(keys, None, keys, None, compare_op, num_items=keys.size())

<X NVIDIA.

https://github.com/NVIDIA/cccl/

	Slide 1

