
import cuda.compute
import torch

Scan algorithm showcasing iterators, custom operators, and kernel fusion

Create a counting iterator to represent the sequence 1, 2, ... N
counts = cuda.compute.CountingIterator(1)

def square(x):
 return x * x

Create a transform iterator to represent the sequence 1, 4, 9, ... N^2
input = cuda.compute.TransformIterator(counts, square)

Create an output array to store the result
output = torch.empty(2**20, dtype=torch.int64).cuda()

def add(a, b):
 return a + b

Perform the scan
cuda.compute.inclusive_scan(input, output, add, init=0, num_items=output.size())

Merge sort algorithm showcasing a custom datatype to be used as input to sort
@cuda.compute.gpu_struct
class Pair:
 a: torch.int16
 b: torch.float64

Prepare sample input
a_keys = torch.tensor([3, -1, 3, 0, -1, 2, 0], dtype=np.int16).cuda()
b_keys = torch.tensor([1.5, 2.3, 0.5, 9.5, -7.0, 4, -1.0], dtype=torch.float64).cuda()
keys = cuda.compute.ZipIterator(a_keys, b_keys)

Struct-aware comparator
def compare_op(lhs: Pair, rhs: Pair):
 return lhs.b < rhs.b if lhs.a == rhs.a else lhs.a < rhs.a

Perform the merge sort in-place
cuda.compute.merge_sort(keys, None, keys, None, compare_op, num_items=keys.size())

High-Performance

CUDA Ops in Python:

JIT-Compiling CCCL

with cuda.compute

CCCL Tops GPU MODE Leaderboard

H100​ A100​ L4 ​ T4​

grayscale 10th N/A N/A N/A

histogram 1st​ 1st​ 1st​ 4th

prefixsum 1st​ 1st​ 1st​ 1st​

sort 1st​ 1st​ 1st​ 1st​

vectoradd 1st​ 1st​ 1st​ 1st​

vectorsum 2nd 2nd 4th 2nd

Simple Python implementations based on

cuda.compute top the GPU Mode leaderboard.

cuda.compute achieves performance on par with

CUDA C++, i.e., state-of-the-art performance across

GPU architectures.

CUDA Core Compute Libraries

for Python

What is it?
cuda.compute is a Python package that brings composable,

high-performance CUDA algorithms to arrays, tensors, and data

ranges (iterators). It fills the missing middle layer: optimized GPU

kernels that act as reusable building blocks, making it easy to

write efficient algorithms—without needing deep CUDA

expertise.

Who is it for?​
Python developers who want to write custom algorithms

portable across GPU architectures without dropping down to

CUDA C++.

Nader Al Awar (NVIDIA), Ashwin Srinath (NVIDIA)

Speed of Light Algorithms,

no manually written CUDA kernels

0

Explicit Fusion: Since

iterators are "lazy", all

computations are fused into

a single kernel call here.​

https://github.com/NVIDIA/cccl/

Build PyTorch ops in pure Python

Faster than torch.compile()
PyTorch recently introduced the higher order operator

associative_scan that computes a parallel prefix scan over an

input tensor with a user-provided associative operator.

We implemented associative_scan entirely in Python with no

C++ code using cuda.compute’s scan. We compared our

implementation's performance to the existing PyTorch

implementation compiled with torch.compile(). Benchmarks

showed that our implementation achieves up to a 5x speedup.

cuda.compute offers speed-of-light performance and flexibility

through Python defined operators and custom datatypes,

making it ideal for developing PyTorch operators.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2^12 2^16 2^20 2^24 2^28

S
p

e
e

d
u

p
 o

v
e

r
P

y
T
o

rc
h

 a
ss
oc
ia
ti
ve
_s
ca
n(
)

Axis Title

Chart Title

Float16 Float32 Float64

https://github.com/NVIDIA/cccl/

	Slide 1

